Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Medicine in Microecology ; 6 (no pagination), 2020.
Article in English | EMBASE | ID: covidwho-2257268

ABSTRACT

Fecal microbiota transplantation (FMT), as an emerging therapy, can be used to treat microbiota related diseases. Progresses in donor screening, washed microbiota preparation, microbiota delivery routes, clinical administrative strategies, and long-term safety are moving FMT forward. Increasing clinical studies, especially those randomized controlled trials about ulcerative colitis and pilot real-word studies about serious inflammatory bowel disease (IBD), have been conducted. This review presents the latest findings about the efficacy, safety and methodology of FMT in treating IBD.Copyright © 2020 The Authors

2.
Journal of Water Process Engineering ; 50, 2022.
Article in English | Web of Science | ID: covidwho-2211024

ABSTRACT

The outbreak of COVID-19 has led to the increase in face mask waste globally. In this study, face mask-derived carbocatalysts doped with nitrogen (N-Mask) were fabricated through one-step pyrolysis of 1:5 w/w mixture of face mask and urea at different temperatures to activate peroxymonosulfate (PMS) for gatifloxacin (GAT) degradation. The N-Mask prepared at 800 degrees C (N-Mask800) exhibited the highest GAT degradation rate with k(app) = 0.093 min(-1) which could be attributed to its high N doping level (17.1 wt%) and highest specific surface area (237.13 m(2) g(-1)). The relationship between k(app), catalyst loading and PMS dosage at various pHs on GAT degradation were successfully established. It was also found that the GAT degradation rate was inhibited in the sequential operating mode compared to the simultaneous operating mode. It was construed that adsorption and catalysis share the same active sites. Deterioration in catalytic performance was observed over successive cycles due to the surface chemistry change during catalysis, and difficulty in catalyst recovery after treatment. Radical scavenger study revealed that both radical and nonradical pathways were involved during GAT degradation, with nonradical pathway playing a dominant role. XPS analysis revealed that pyrrolic N and graphitic N can facilitate PMS activation via radical and nonradical pathways. Based on the LC-MS/MS analysis, the GAT degradation intermediates were identified, and the possible degradation pathways were tentatively proposed. Overall, this study demonstrated that carbocatalyst derived from face mask could be transformed into costeffective and environmentally friendly PMS activator for environmental wastewater treatment applications.

3.
Saudi J Biol Sci ; 28(8): 4560-4568, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1211146

ABSTRACT

The human-to-human transmitted respiratory illness in COVID-19 affected by the pathogenic Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), which appeared in the last of December 2019 in Wuhan, China, and rapidly spread in many countries. Thereon, based on the urgent need for therapeutic molecules, we conducted in silico based docking and simulation molecular interaction studies on repurposing drugs, targeting SARS-CoV-2 spike protein. Further, the best binding energy of doxorubicin interacting with virus spike protein (PDB: 6VYB) was observed to be -6.38 kcal/mol and it was followed by exemestane and gatifloxacin. The molecular simulation dynamics analysis of doxorubicin, Reference Mean Square Deviation (RMSD), Root Mean Square fluctuation (RMSF), Radius of Gyration (Rg), and formation of hydrogen bonds plot interpretation suggested, a significant deviation and fluctuation of Doxorubicin-Spike RBD complex during the whole simulation period. The Rg analysis has stated that the Doxorubicin-Spike RBD complex was stable during 15,000-35,000 ps MDS. The results have suggested that doxorubicin could inhibit the virus spike protein and prevent the access of the SARS-CoV-2 to the host cell. Thus, in-vitro/in-vivo research on these drugs could be advantageous to evaluate significant molecules that control the COVID-19 disease.

SELECTION OF CITATIONS
SEARCH DETAIL